
We examined three _P. vermiculatus_ (mean SVL = 29.3 mm ± 4.2 SD, range = 26–34 mm) from Peninsular Malaysia, Perat State, Bukit Larut (4.324758°N, 102.324758°E; WGS 84) collected by LLG and deposited in the herpetology collection of La Sierra University, Riverside County, USA as LSUHC 8870 (collected March 2008) and LSUHC 10625, 10626 (collected September 2010).

The digestive tract was removed and the esophagus, stomach, small and large intestine were opened and their contents examined for parasites utilizing a dissecting microscope. Two Nematoda were found. They were each placed in a drop of lactophenol on a glass microscope slide, cover slipped, studied under a compound microscope, and identified utilizing Anderson et al. (2009. Keys to the Nematode Parasites of Vertebrates, Archival Volume. CAB International, Wallingford, Oxfordshire, 463 pp.) and Gibbons (2010. Keys to the Nematode Parasites of Vertebrates. Supplementary Volume. CAB International, Wallingford, Oxfordshire. 416 pp.) We identified one female of _Foleyellides malayensis_ from the body cavity of LSUHC 10625 and one larval Acuariidae in a cyst in the stomach wall of LSUHC 10626. _Foleyellides malayensis_, a member of the Onchocercidae, is transmitted by blood-sucking arthropods (Anderson 2000. Nematode Parasites of Vertebrates. Their Development and Transmission. CAB International, Wallingford, Oxfordshire. 650 pp.). Acuariidae are parasites of aquatic birds and utilize arthropods as intermediate hosts (Anderson 2000, _op. cit._). Amphibians serve as paratenic (transport) hosts with development to the adult occurring when the amphibian is eaten by a carnivorous bird. Both nematodes were deposited in the Harold W. Manter Laboratory (HWML), University of Nebraska, Lincoln, USA as _F. malayensis_ (HWML 99964) and Acuariidae sp. (HWML 99965). _Philautus vermiculatus_ represents a new host record for _F. malayensis_ and for larvae assigned to the Acuariidae.

STEPHEN R. GOLDBERG, Whittier College, Department of Biology, Whittier, California 90608, USA (e-mail: sgoldberg@whittier.edu);

CHARLES R. BURSEY, Pennsylvania State University, Department of Biology, Shenango Campus, Sharon, Pennsylvania 16146, USA (e-mail: cxb13@psu.edu); L. LEE GRISMER, La Sierra University, Department of Biology, Riverside, California 92515, USA (e-mail: lgrismer@lasierra.edu).

We used high-resolution x-ray computed tomography (CT) to document the skeleton in a male specimen of _P. kreftii_ (CAS 168486; SVL = 40.0 mm; Fig. 1A) that was collected near Amani in the Eastern Arc Mountains of Tanzania (5.10°S, 38.62°E; WGS 84) by R. C. Drewes, K. M. Howell, and J. V. Vindum on 9 April 1988. While reconstructing the skeleton of this specimen, we identified a frog in its gut that appears to have been swallowed headfirst, and that based on skeletal morphology (Fig. 1B,C) is a juvenile _Arthroleptis_. It is identifiable as not yet mature due to the combination of its small size (SVL = ~20 mm), poorly ossified mesodial bones, and by having cranial bones that are not coossified (e.g., the exoccipital and otic region). Unlike the skeleton of _P. kreftii_, the skeleton of the ingested frog lacks an ossified style of the sternum and has more medially placed vomers, both of which are characteristics of _Arthroleptis_ in comparison to _Phrynobatrachus_ (Scott 2005. Cladistics 21:507–574). Because the size of this ingested frog is near the upper size limit for the small species of _Arthroleptis_ found in these mountains (e.g., _A. xenodactyloides, A. xenodactylus_), Blackburn 2008. Mol. Phylogen. Evol. 49:806–826), it is likely that this represents a juvenile of a larger species such as _A. affinis_ or _A. stenodactylus_ (Loader et al. 2011. Fieldiana Life Earth Sci. 4:90–102). Because this specimen has femora that are approximately as long as the tibiofibulae, it is more likely to be _A. affinis_ rather than _A. stenodactylus_ which typically has relatively shorter tibiofibulae.

![Figure 1](image-url)

DAVID C. BLACKBURN (e-mail: dblackburn@flmnh.ufl.edu), **DANIEL J. PALUH**, and **EDWARD L. STANLEY**, Department of Natural History, Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida 32611, USA.

PHYSALAEMUS CAMACAN. PREDATION. Amphibians are prey for numerous species of invertebrates (Toledo et al. 2006. J. Zool. 271:170–177). Among the invertebrate predators, the Arachnida represent one of the four classes of arthropods that are significant vertebrate predators (McCormick and Polis 1982. Biol. Rev. Camb. Philos. Soc. 57:29–58). Several events of anuran predation by arachnids are reported from the Neotropical region and are attributed to the spider families Pisauridae, Ctenidae, Lycosidae, Sparassidae, and Theraphosidae (Menin et al. 2005. Phyllomedusa 4:39–47). Herein we report the predation of a leptodactylid frog by a spider from the family Ctenidae.

Physalaemus camacan is a small frog endemic to the Atlantic Forest of southern Bahia State, northeastern Brazil (Frost 2017. Amphibian Species of the World: An Online Reference. Version 6.0 <http://research.amnh.org/herpetology/amphibia/index.html>; accessed 3 May 2017. American Museum of Natural History, New York). Populations of the spider *Ctenus rectipes* are found in the Atlantic Forest of northeastern Brazil (Brescovit and Simó 2007. Arachnology 14:1–17). On 7 June 2015 at 2130 h, we observed a female adult spider *Ctenus rectipes* preying upon an adult frog *P. camacan* on the water surface of a temporary pond in a fragment of the Atlantic forest of the Reserva Ecológica Michelin (13.81666°S, 39.13333°W; SAD 69), located in the municipality of Igrapíuna, Bahia, Brazil. The predation event was in advanced stage and the spider had already ingested the frog’s anterior region.

We thank Antonio D. Brescovit for identifying the spider, and the Center for Biodiversity Studies of the Michelin Ecological Reserve for logistical and financial support. CVMM thanks Fernanda Tonolli for her patience, affection, and eternal loving support.

CAIO VINICIUS DE MIRA-MENDES (e-mail: caio_vina@yahoo.com.br), **MIRCO SOLÉ**, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Bairro Salobrinho, CEP 45662-900, Ilhéus, Bahia, Brazil; **DANILO SILVA RUAS**, Universidade Estadual do Sudoeste da Bahia, Campus Itapetinga, Praça Primavera, 40 - Bairro Primavera, CEP 45700-000, Itapetinga, Bahia, Brazil.

POLypedates Occidentalis (Western Tree Frog).

PREDATION. Post-metamorphic anurans are known to be most vulnerable to invertebrate predators either when they are breeding or while they are juveniles (Toledo 2005. Herpetol. Rev. 36:395–400). The only report synthesizing predation of post-metamorphic anurans is more than a decade old and reports a diverse community where ~68 species of anurans have been preyed upon in over 300 documented instances by at least 57 species of invertebrates (Toledo 2005, op. cit.). Despite the crucial role of predation in amphibian ecology and behavior, we know little about even the broad categories of predators, particularly among invertebrates. Here, we report an incidence of predation on a juvenile *P. occidentalis* by a *Scutigera* sp.

On the night of 6 July 2015, during a survey as part of the “Bisle Frog Team,” a citizen engagement initiative, we encountered an arthropod of the genus *Scutigera* feeding on a juvenile (SVL = ca. 15 mm) *P. occidentalis* (Fig. 1). The *Scutigera* sp., commonly known as house centipedes, was found on a rock and had started to ingest the anuran by its left eye. The *Scutigera* sp. did not move in our presence and continued to feed on the anuran. We observed the predation incident for five minutes and continued on our survey. We did not observe if the *Scutigera* sp. consumed the whole anuran. The anuran did not show any signs of movement and was possibly envenomated. This predation incident occurred around a small, shallow pond in which over 50 tadpoles of *P. occidentalis* were observed. Six adult *P. occidentalis*